(B) Course information in English

General course information:

Course title:	Rei Co	inforced ncrete Design I	Course code:		CE06_S05
Credits:	5		Work load		160
			(hours):		
Course level:	Course level:		X	Gradu	ate 🛛
Course type:	Course type:		X	Select	ive 🗆
Course category:		Basic	X	Orientation	
Semester:	6 th		Hours per		4
			week:		
Course objectives (capabilities pursued and learning results):					
The course objective is the behavior and ultimate strength design of					
prismatic reinforced concrete members (beams and columns) under					
normal stresses (bending moment and axial force) and shear stresses					
(shear force and torsional moment). The course provides the tools for the					
ultimate strength design of R/C beams and columns under a possible					
seismic loading.					
Prerequisites:					
1. Mechanics I, II					

- 2. Construction Materials
- 3. Structural Analysis I

Instructor's data:

Name:	Theodoros Xrisanidis
Level:	Teaching Staff
Office:	
Tel. – email:	email: theodoros_gr@yahoo.com
Other tutors:	-

Specific course information:

Week		Hours	
No.	Course contents	Course attendance	Preparation
1	Materials: concrete, steel	4	3
2	Behavior of a reinforced concrete member - constitutive laws for concrete and steel	4	3
3	Load combinations – maximum/minimum M, V. Ultimate strength design: concepts and code specifications.	4	3
4	Design under seismic loading – Factor of seismic response and ductility	4	4
5	Ultimate strength design for normal stresses due to uniaxial bending (M) and axial force (N). Equations of equilibrium/equivalence between internal forces and external actions	4	3
6	Under-reinforced, over-reinforced and balanced design of RC beams with rectangular cross-section. Design of rectangular RC beams with single (only tension reinforcement) or double steel (tension and compression reinforcement)	4	3
7	Ultimate strength design of T-beams (effective width, balanced steel reinforcement ratio). LAB: 4-point bending test of R/C beam failing in flexure	4	3
8	Ultimate strength design for reinforced concrete columns under uniaxial bending and axial force	4	3
9	Ultimate strength interaction diagrams M-N (uniaxial bending and axial force) – Lateral confinement	4	3
10	Ultimate strength design for rectangular columns under biaxial bending and axial force (M_x - M_y - N) and interaction diagrams) - Columns with low shear-length ratio	4	4
11	Ultimate strength design for beams under shear (V) (mechanisms, cross-section, transverse reinforcement - stirrups)	4	3
12	Ultimate strength design for beams under shear (V) (critical regions, design for shear under seismic loading – X steel reinforcement)	4	3
13	Ultimate strength design for beams under pure torsion (T) (mechanism, cross-section, transverse and longitudinal steel reinforcement)	4	4
14	Ultimate strength design for beams under combined torsion (T), shear (V) and bending (M) (transverse and longitudinal steel reinforcement, construction details)	4	3

Additional hours for:				
Class project Examinations		Preparation for examinations	Educational visit	
25	4	30		

Suggested literature:

- 1. Greek Code for the Design of Reinforced Concrete Structures (2000)
- 2. Eurocode 2: Part 1-1 (EN1992-1-1)
- 3. Eurocode 8: Part 1 (EN1998-1)
- 4. Greek Code for Aseismic Design
- 5. Nilson, A., "Design of Reinforced Concrete Structures"
- 6. Class notes for RC I
- 7. Fardis M., «A course on Reinforced Concrete»
- 8. Penelis/Stylianidis/Kappos/Ignatakis, «Reinforced Concrete Structures»

Teaching method (select and describe if necessary - weight):				
Teaching	\boxtimes	75%		
Seminars		-		
Demonstrations		-		
Laboratory	\boxtimes	3%		
Exercises	\boxtimes	20%		
Visits at facilities	\boxtimes	2%		
Other (describe):		-		
Total		100%		

Evaluation method (select)- weight:				
	<u>written</u>	<u>%</u>	<u>Oral</u>	<u>%</u>
Homework				
Class project	\mathbf{X}	25	\mathbf{X}	5
Interim examination				
Final examinations	\boxtimes	70		
Other (describe):				